Registered participant? Please login!

Mini-courses

Fabrizio Andreatta (Milano) - $p$-adic variations of automorphic sheaves

I will present a technique for deforming coherent cohomology classes over modular curves. Applied to different sheaves one obtains in this way families of overconvergent modular forms and nearly overconvergent modular forms. I will provide applications to the construction of $p$-adic $L$-functions. This is based on several joint works with A. Iovita, V. Pilloni and G. Stevens.

Ana Caraiani (London) (to be confirmed)

Eugen Hellmann (Münster) - $p$-adic automorphic forms, eigenvarieties and criteria for classicality

In this course we will introduce and study $p$-adic modular forms and their higher dimensional generalizations, $p$-adic automorphic forms. We will start by introducing $p$-adic modular forms as p-adic limits of classical modular forms. These $p$-adic limits naturally vary in families, so called eigenvarieties. These are geometric objects over the p-adic numbers whose points parametrize $p$-adic modular forms. The problem how to decide whether a given $p$-adic modular form is in fact a classical form has been studies extensively over the last decades starting with Coleman’s criterion that small slope implies classical.

We will study such classicality criteria, ending with my recent joint work with C. Breuil and B. Schraen on classicality of $p$-adic automorphic forms on define unitary groups, which connects classicality criteria with geometric properties of eigenvarieties.

Research talks

Patrick Allen, University of Illinois at Urbana-Champaign

Charlotte Chan, University of Michigan

Cong Xue, University of Cambridge

Further speakers will be announced soon.

We will also have some questions and answers sessions for the courses. Further details will be announced later.